Determinants of IT Usage and New Product Performance

Gloria Barczak, Fareena Sultan, and Erik Jan Hultink

Explosive growth of information technologies (IT) has prompted interest in examining the role of IT in new product development (NPD). Through desktop software and Web-based tools, IT has been used to aid idea generation and product testing as well as for NPD activities such as process and portfolio management. Recent research suggests, however, that a gap exists between IT availability and usage. Given the importance of IT in creating business value through the development of new products and services, the present study seeks to identify factors that affect IT usage. Further, anecdotal evidence and conceptual studies intimate that the usage of IT tools for NPD can shorten time to market, can improve product quality, and can increase productivity. However, empirical substantiation of this impact is mostly nonexistent. The current study investigates the relationship between IT usage and two measures of new product performance: speed to market and market performance. Employing a mail-survey methodology, the study uses data from a sample of practitioner members from the Product Development & Management Association to examine the effect of project risk, existence of a champion, autonomy, innovative climate, IT infrastructure, and IT embeddedness on the extent of IT usage. These data are also used to explore the impact of IT usage on speed to market and market performance. The results indicate that project risk, existence of a champion, and IT embeddedness positively affect the extent of IT usage for NPD. Additionally, IT usage positively and significantly influences the performance of the new product in the marketplace. Surprisingly, and contrary to popular belief, IT usage does not have any impact on speed to market. An important implication of this study is that IT usage influences performance but not in the way managers expect. Specifically, IT usage does not seem to affect speed to market but rather positively impacts the performance of the new product in the marketplace. This result suggests that IT usage in NPD provides far more value to firms than previously thought and provides evidence to support greater investments in IT for product development efforts. Other implications of the study are that unless IT is embedded into the NPD process and champions for IT tools exist, chances are that IT will not be used and its benefits will not be realized.

Introduction

There has been explosive growth in the development of information technologies (IT) for product development as technology has advanced and the importance of a formal new product development (NPD) process has been recognized. These technologies consist of desktop software and
Web-based tools for different stages of the NPD process such as idea generation and testing as well as for various NPD activities such as process and portfolio management. In spite of the efforts vendors have taken to develop high-quality IT tools, research suggests that companies are fairly immature in their use of IT for product development (Adams-Bigelow, 2004; Barczak and Sultan, 2006). For example, the recent Comparative Performance Assessment Study (CPAS) by the Product Development & Management Association (PDMA) found that less than 20% of the “best” firms used Web-based market research tools and product portfolio management software whereas less than 40% used groupware software to support their project teams (Adams-Bigelow, 2004). Likewise, Barczak and Sultan (2006) observed that NPD project teams tended to use simple, easy-to-use ubiquitous tools such as e-mail, Microsoft Office, and Excel/Access databases rather than more sophisticated and more complex tools.

This gap between IT availability and usage with regard to NPD activities raises this question: What factors influence IT usage for product development? Recent studies in the IT field argue that an important aspect of IT work is to create business value through the development of new products and services (Farrell, 2003; Weill, Subramani, and Broadbent, 2002). Moreover, IT is considered to be a source of various capabilities—including innovation capability—that can provide potential competitive advantages for a firm (Farrell, 2003; Sambamurthy and Zmud, 2000). Identifying the factors that influence IT usage is crucial from the point of view of facilitating research and development (R&D) activities that enable firms to achieve business goals.

Examination of the broader, related question of whether or not IT usage impacts new product performance has largely been limited to anecdotal evidence and conceptual studies suggesting that IT can reduce cycle time, can increase productivity, can improve product quality, and can enhance collaboration and communication in NPD (Bowden, 2004; Ozer, 2000). The one exception to this is an empirical study by Durmusoglu, Calantone, and Sambamurthy (2006), who found that neither high nor low frequency of IT use is associated with NPD cost, speed, or flexibility. However, their study had a sample size of only 42 respondents and did not investigate the impact of IT usage on commercial performance. In the IT literature, the relationship between IT usage and performance has largely been overlooked (Devaraj and Kohli, 2003). Thus, empirical examination of the relationship between IT usage and speed to market as well as the market performance of the new product appears to be essential.

Drawing on concepts and insights from the NPD, adoption, and IT literatures, the present study identifies six factors hypothesized to positively influence IT usage: (1) project risk; (2) existence of a champion; (3) autonomy; (4) innovative climate; (5) IT infrastructure; and (6) IT embeddedness. This research also investigates the relationship between IT usage and two measures of new product performance: speed to market and market performance. The study hypotheses are tested using data collected through a mail survey from the PDMA practitioner member database.
The present study’s research model and findings seek to make several contributions to theory and practice. First, this study identifies antecedents to IT usage so as to provide new product managers with actions they can take to increase IT usage for product development efforts. Second, this study’s research question relates to the broader theme of IT’s role in creating an innovation capability that results in business value. This study builds on this theme and extends it by focusing on the relationship between IT usage and two measures of new product performance: speed to market and market performance.

The remainder of this article is structured as follows. First, the conceptual framework and hypotheses are presented. Next, the research methodology is explained and results are discussed. The article ends with a discussion of managerial implications, limitations, and suggestions for future research.

Conceptual Framework

Figure 1 presents a model that shows six antecedents to IT usage. IT usage refers to the use of various IT tools, in a given NPD project, for different NPD activities—communication and collaboration, product development, project management, information and knowledge management, and market research and analysis—across three stages of the NPD process: fuzzy front end, development and testing, and launch and commercialization.

The precursors to IT usage are considered by previous literature to have an important impact on ITs’ role in NPD (Ozer, 2004; Sethi, Pant, and Sethi, 2003; Waarts, van Everdingen, and van Hillegersberg, 2002) and in innovation adoption (Agarwal, Tanniru, and Wilemon, 1997; Kwon and Zmud, 1987). This study’s model also proposes that IT usage will have a direct effect on new product performance and, more specifically, on speed to market and market performance. Following, the various components of this study’s model and hypotheses are discussed. Table 1 provides a summary of key literature regarding each variable in our model.

Antecedents to IT Usage

Project risk. Risk is defined as uncertainty about future events and the magnitude of potential failure (March and Shapira, 1987). NPD projects that are strategically important to the firm have a high degree of risk, and their failure could have devastating results. To reduce risk, project teams may gather and disseminate necessary market information via the Internet, for example, to enable more effective decision making (Teo and Choo, 2001). Organizations likely to adopt IT systems generally have aggressive management willing to take financial and organizational risk (Grover, 1993). Therefore, for higher-risk projects, project teams will be more likely to employ IT tools to a greater degree to gather information and to facilitate coordination so as to ensure a successful project.

\[H1: \text{The greater the risk of the project being developed, the higher the IT usage in NPD projects.} \]

Existence of champion. Prior research suggests that the existence of a champion has a positive impact on innovation adoption (Beath, 1991; Ettlie, Bridges, and O’Keefe, 1984; Grover, 1993). Specifically, enthusiastic and committed individuals often play an important role in overcoming resistance to an innovation, securing resources for the innovation, and promoting the

![Figure 1. Conceptual Model](image)
<table>
<thead>
<tr>
<th>Variable</th>
<th>References in Literature</th>
<th>Methodology</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Risk</td>
<td>Teo and Choo (2001)</td>
<td>Survey; 129 companies; CEOs/managing directors</td>
<td>Use of the Internet improves the quality of information, which in turn leads to strategic benefits (i.e., revenue generation, cost reductions, and managerial effectiveness).</td>
</tr>
<tr>
<td></td>
<td>Grover (1993)</td>
<td>Survey with 216 responses from CIOs and IS directors</td>
<td>Having aggressive management that is willing to take risks is positively related to adoption.</td>
</tr>
<tr>
<td>Existence of Champion</td>
<td>Beath (1991)</td>
<td>Interviews with 15 IT champions</td>
<td>IT champions operate as other champions do: They promote their ideas actively through informal processes by explaining and educating. Innovation champions predict adoption of radical innovations.</td>
</tr>
<tr>
<td></td>
<td>Ettlie, Bridges, and O’Keefe (1984)</td>
<td>Interviews with 90 managers; survey of 147 managers from the food-processing industry</td>
<td>Existence of a champion is a strong determinant of customer-based interorganizational systems.</td>
</tr>
<tr>
<td></td>
<td>Grover (1993)</td>
<td>Survey with 216 responses from CIOs and IS directors</td>
<td>Product champions were not significantly related to new product success or failure. Management support played a more important role than product champions.</td>
</tr>
<tr>
<td></td>
<td>Maidique and Zirger (1984)</td>
<td>Two surveys of senior managers of U.S. electronics firms and in-depth case studies of 20 of these firms</td>
<td></td>
</tr>
<tr>
<td>Autonomy</td>
<td>Grover (1993)</td>
<td>Survey with 216 responses from CIOs and IS directors</td>
<td>Participatory decision making is positively associated with adoption of an interorganizational system.</td>
</tr>
<tr>
<td></td>
<td>Grover and Goslar (1993)</td>
<td>154 senior-level IS executives primarily from finance and manufacturing firms</td>
<td>Environmental uncertainty and decentralization of decision making have a significant, positive impact on the adoption and implementation of telecommunications technologies.</td>
</tr>
<tr>
<td></td>
<td>Moch and Morse (1977)</td>
<td>Hospital administrators and chiefs of medicine; 12 innovations studied; 489 hospitals responded</td>
<td>Decentralization affects the adoption of hospital innovations. Size of organization impacts adoption.</td>
</tr>
<tr>
<td>Innovative Climate</td>
<td>Armbrecht et al. (2001)</td>
<td>Semistructured interviews in 19 companies with key executives involved in knowledge management</td>
<td>One key driver of knowledge management in R&D is a culture that values creating and sharing knowledge.</td>
</tr>
<tr>
<td></td>
<td>Cooper, Edgett, and Kleinschmidt (2004)</td>
<td>Site visits with 5 companies; survey of 105 business units</td>
<td>A climate and culture of open communication, not being risk averse, and provision of resources for creative work separates best from worst performers.</td>
</tr>
<tr>
<td></td>
<td>Lai and Mahapatra (1997)</td>
<td>Meta-analysis of research on IT implementation between 1976 and 1995</td>
<td>Organizational culture plays a key role in IT implementation.</td>
</tr>
<tr>
<td></td>
<td>Siegel and Kaemmerer (1978)</td>
<td>Students and faculty from a number of different schools; 3 phase study</td>
<td>Development of a reliable and valid tool comprising five dimensions to measure organizational innovativeness, including support of creativity, tolerance of differences, and personal commitment.</td>
</tr>
<tr>
<td>IT Infrastructure</td>
<td>Anakwe, Igbaria, and Anandarajan (2000)</td>
<td>170 employees from 9 organizations in Nigeria</td>
<td>Organizational support is positively related to daily computer usage and frequency of use. Organizational support refers to positive attitude toward microcomputers, endorsements by senior management to provide training, and IT consulting support.</td>
</tr>
<tr>
<td></td>
<td>Grover (1993)</td>
<td>Survey with 216 responses from CIOs and IS directors</td>
<td>Having a strong IT infrastructure is positively related to IS adoption.</td>
</tr>
<tr>
<td></td>
<td>Maidique and Zirger (1984)</td>
<td>Two surveys of senior managers of U.S. electronics firms and in-depth case studies of 20 of these firms</td>
<td>Firms with technological superiority have greater new product success than firms without such capability.</td>
</tr>
<tr>
<td></td>
<td>Weill, Subramani, and Broadbent (2002)</td>
<td>Interviews, surveys and personal visits; 180 e-business initiatives from 1990 to 2001</td>
<td>Investments in specific infrastructure capabilities are needed to implement particular business initiatives; one cluster of capabilities focuses on IT–R&D, which includes the business’s search for new ways to use IT to create business value.</td>
</tr>
</tbody>
</table>
innovation (Ettlie, Bridges, and O’Keefe, 1984; Maidique and Zirger, 1984). Similarly, the literature on IT suggests that an important antecedent to implementation of an IT system is the existence of a champion (Beath, 1991; Grover, 1993).

The present study’s focus is on champions at the project level because these individuals are most likely to use new IT tools and to influence team members to use them as well. Champion support positively impacts the use of NPD processes and, thus, the internal workings of NPD in a firm (Markham and Griffin, 1998). IT champions are the individuals on the project team who are most likely to see the value of a particular IT tool even without full knowledge of that tool. As a result, these champions take it on themselves to be responsible for using the tool, promoting its benefits to other team members (Beath, 1991), and even training peers how to use the tool. Without a champion or multiple champions on a project, the team is less likely to try new features of an existing tool or to try out new tools. Thus, the existence of a champion for specific IT tools will lead to greater IT usage.

H2: The more likely the existence of a champion for specific IT tools, the higher the IT usage in NPD projects.

Autonomy. Autonomy refers to the degree to which the project team is able to make its own decisions. Prior research indicates that the degree of centralization (i.e., concentration of decision making) is negatively related to innovation adoption (Grover, 1993; Grover and Goslar, 1993; Moch and Morse, 1977). High centralization means that project teams have little autonomy to make decisions and thus resist organizational attempts to implement innovations (Grover, 1993). Thus, project teams that have little freedom in making decisions regarding their project and product are likely to lack the motivation to experiment with new IT tools or with additional features of available tools. They may even refuse to use particular and sophisticated IT tools unless expressly demanded to do so by senior management. By contrast, project teams with greater decision making authority will feel that they have more control over their work and will want to ensure that the project and product are successful. As a result, they are likely to take greater initiative in trying out new tools and new features of existing tools to improve the development of the new product. In the IT literature, pushing down decision making has been found to positively

Table 1. (Cont’d.)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Methodology</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT Usage and Performance</td>
<td>Survey; 132 firms, senior IT executives</td>
<td>Knowledge of IT facilitates information exchanges and joint problem solving that enable organizations to use IT for higher-order business value, pushing down decision making contributes to IT knowledge. New IT tools increase problem-solving capacity as well as productivity. However, new tools must be integrated into the work that needs to be done for firms to reap these benefits. IT integration is not associated with early adoption of ERP and is negatively associated with later adoption of ERP.</td>
</tr>
<tr>
<td>IT Embeddedness</td>
<td>Survey; 132 firms, senior IT executives</td>
<td>IT usage is positively associated with hospital revenue and quality (66% reduction in patient mortality). New IT tools increase problem-solving capacity as well as productivity. However, new tools must be integrated into the work that needs to be done for firms to reap these benefits. IT integration is not associated with early adoption of ERP and is negatively associated with later adoption of ERP.</td>
</tr>
</tbody>
</table>
| IT Usage and Performance | 72 major car projects launched between 1981 and 1999 | High centralization means that project teams have little autonomy to make decisions and thus resist organizational attempts to implement innovations (Grover, 1993). Thus, project teams that have little freedom in making decisions regarding their project and product are likely to lack the motivation to experiment with new IT tools or with additional features of available tools. They may even refuse to use particular and sophisticated IT tools unless expressly demanded to do so by senior management. By contrast, project teams with greater decision making authority will feel that they have more control over their work and will want to ensure that the project and product are successful. As a result, they are likely to take greater initiative in trying out new tools and new features of existing tools to improve the development of the new product. In the IT literature, pushing down decision making has been found to positively

604 J PROD INNOV MANAG 2007;24:600–613

G. BARCZAK, F. SULTAN, AND E.J. HULTINK
influence an organization’s knowledge of IT innovations so that these tools can be used in support of firm activities (Boynton, Zmud, and Jacobs, 1994). Thus, firms that give greater decision authority to project teams will lead to greater IT usage to help meet project goals.

H3: The greater the autonomy of the team, the higher the IT usage in NPD projects.

Innovative climate. Climate is defined as the degree to which the organization is supportive of creativity and tolerant of differences in thinking and perspective (Scott and Bruce, 1994; Siegel and Kammern, 1978). An innovative climate is one that supports creativity, is not risk averse, is willing to try new things, and exemplifies open communication among employees across functions (Cooper, Edgett, and Kleinschmidt, 2004; Siegel and Kammern, 1978). Frambach and Schillewaert (2002, p. 165) argued that the degree to which “an organization is receptive to new products or ideas will influence its propensity to adopt new products”; however, they have no empirical evidence to support this contention. In fact, a culture that values creating and sharing knowledge is a key driver of knowledge management in the R&D process (Sambamurthy and Zmud, 2000). In fact, such support is positively related to frequency of use and number of applications used (ibid.). A lack of support from management will inhibit the use of knowledge management tools (Armbrecht et al., 2001).

Based on the aforementioned research, in firms with an IT infrastructure to support NPD, project teams would have reliable IT systems and access to the same IT tools. Personnel would be available to support the infrastructure and to provide guidance to users. The existence of a high-quality infrastructure would allow team members to more easily and quickly share necessary project-related information. These benefits would drive IT usage as project teams learned the advantages of using the infrastructure to accomplish their work.

H5: The greater the sophistication of the IT infrastructure and the greater the extent to which it supports distribution of IT tools, the higher the IT usage in NPD projects.

IT embeddedness. Embeddedness refers to the degree to which IT tools play a significant role in the development of new products and in the sharing of information among project team members and are used to manage the interdependencies of the NPD project team (Sethi, Pant, and Sethi, 2003). The presence of a well-developed IT infrastructure is considered a major business resource (Keen, 1991; McKenney, 1995) that enables R&D (Weill, Subramani, and Broadbent, 2002) and continuous improvement of existing products (Duncan, 1995). Infrastructure facilitates cross-functional processes (Sambamurthy and Zmud, 2000), such as NPD, by enhancing connectivity across various functional groups (Keen, 1991).

Little, if any, research has focused on the association between IT infrastructure and IT usage. However, a firm’s technological strengths have been shown to impact positively on innovation adoption (Grover, 1993; Maidique and Zirger, 1984). In addition, organization support (i.e., attitude of senior management, provision of training and other resources) has a positive relationship with computer usage (Anakwe, Igbaria, and Anandarajan, 2000). In fact, such support is positively related to frequency of use and number of applications used (ibid.). A lack of support from management will inhibit the use of knowledge management tools (Armbrecht et al., 2001).

H4: The more innovative the climate of the firm, the higher the usage of IT in NPD efforts.

IT infrastructure. Infrastructure refers to the computer hardware, software, and human resources necessary to support wide distribution of IT tools as well as to the sophistication of the infrastructure (Sethi, Pant, and Sethi, 2003).
component of people’s work and a firm’s business processes before it can exhibit any significant business value (Boynton, Zmud, and Jacobs, 1994; Thomke, 2006). Firms characterized by high embeddedness presumably will have integrated IT tools into their NPD process (Sethi, Pant, and Sethi, 2003). However, Waarts, van Everdingen, and van Hillegersberg (2002) found that IT integration had a negative significant impact on late adoption of enterprise resource planning (ERP). In other words, the likelihood of later adoption of ERP systems decreases when firms have integrated their IT functions adequately because the value of such a system is not as strong.

Though conceptually related, (Table 3), IT embeddedness and IT usage are not the same thing. The key difference between IT embeddedness and IT usage centers on whether or not the IT tools are routinized into the NPD process. Usage of a particular tool may be due to individual team member and project choice to improve efficiency and effectiveness and thus can be independent of what the organization requires in terms of the formal NPD process. When IT tools are assimilated into the NPD process, usage of such tools is likely to be dictated by the organization and the process itself.

In firms that have embedded specific IT tools into their NPD process, project team members will have some degree of familiarity with those tools and will know which tools are appropriate for particular activities. High levels of embeddedness will also likely result in most—if not all—projects using the tools. As well, team members will use the tools for the multiple projects in which they are engaged. On the other hand, if IT tools are not embedded in the NPD process, particular IT tools may be used only for narrow applications and only by certain NPD personnel motivated by their own internal needs and frustrations with existing tools and systems. Thus, the degree of embeddedness of IT in the firm is likely to influence IT usage.

H6: The greater the embeddedness of IT in the firm, the higher the IT usage in NPD projects.

Effect of IT Usage on New Product Performance

The relationship between IT use and performance has been considered critical in the IT field (Delone and McLean, 2003). In the present study, performance consists of two measures: speed to market and market performance.

Speed to market. Speed to market refers to the time taken to bring a product from idea conception to market launch. The shorter this cycle time, the faster the product is brought to market. Anecdotal evidence and conceptual research suggests that the use of IT tools can increase the speed with which products are brought to market (Bowden, 2004; Ozer, 2000; Sethi, Pant, and Sethi, 2003). Specifically, technologies such as the internet enable NPD teams to gather, store, use, and disseminate market and product information more easily and quickly (Teo and Choo, 2001).

However, an empirical study found that more frequent use of IT tools in NPD does not generally seem related to better NPD outcomes (Durmusoglu, Calantone, and Sambamurthy, 2006). Specifically, Durmusoglu, Calantone, and Sambamurthy (2006) found that neither low- nor high-frequency use of IT tools is associated with low or high NPD speed. Though this empirical study contradicts accepted thinking, its small sample size of small and medium-size businesses and use of nonparametric statistical tests signifies the need for further examination of the relationship between IT usage and speed to market. Moreover, no IT studies investigate the relationship between IT usage and speed to market (cf. Osei-Bryson and Ko, 2004).

H7: Greater usage of IT tools during the development of a new product project will lead to faster speed to market.

Market performance. Market performance refers to the degree to which the new product meets expectations with regard to sales, market share, profitability, market performance, and customer satisfaction (Sarin and Mahajan, 2001). In the IT area, the findings regarding investments in IT and firm performance (Osei-Bryson and Ko, 2004) are inconsistent. Some have found a positive, direct association whereas others have found no relationship or no direct link (ibid.). Yet support has been found for a significant, positive relationship between IT usage and financial and quality performance (Devaraj and Kohli, 2003). No empirical studies in the NPD field have been undertaken that investigate the relationship between IT and financial performance.

IT tools, such as the Internet, enable project teams to collect, share, and use high-quality market information in the development of a new product (Ozer,
This, in turn, enhances the quality of the decisions made with regard to the new product (Ozer, 2000; Teo and Choo, 2001) resulting, potentially, in products that meet organizational and project goals. Therefore, it seems reasonable to predict that greater IT usage will result in higher commercial performance of the new product.

H8: Greater usage of IT tools during the development of a new product project will lead to higher market performance.

Method

The present study’s sample was drawn from the mailing list of 1,371 PDMA practitioner members in the United States and Canada. Respondents, who held the title of director, manager, project or program manager, and vice president, were asked to use a new product or service launched within the past two years as the basis for completing the survey. Each respondent received a postcard informing them of the survey. One week later, each respondent was mailed a letter explaining the purpose of the study, a copy of the questionnaire, and a return envelope. About 10 days later, a reminder postcard was mailed. A month after the initial survey was sent, an e-mail blast was sent. After accounting for incomplete surveys, a total of 212 surveys were received, resulting in a 15.5% response rate.

Table 2 presents the sample characteristics. Companies participating in the study came from a variety of industries with average annual sales of $2.68 billion and an average of 3,270 employees. Of respondents surveyed, 36% based their survey responses on the development of a consumer product whereas 52% based it on development of an industrial product. The characteristics of the study’s sample compare favorably with past studies that have used PDMA practitioner members as respondents (Griffin, 1997; Griffin and Page, 1996). For example, Griffin (1997) reported that 91% of the firms in her study developed physical goods and 9% focused on services. Griffin and Page (1996) stated that 56% of their respondents had R&D and engineering backgrounds, 19% were from marketing, and only 6% had manufacturing expertise.

The average length of time respondents had been in their job was 4.75 years. This combined with the fact that all were members of PDMA, a professional association for NPD practitioners, indicates that the key informants were qualified to respond to the survey about a recent NPD project. Of the firms surveyed, 74% used some form of a cross-functional Stage-Gate® process to develop their new products. Average core team size was eight members, with 67% of core team members being located in the same building.

Nonresponse bias was assessed by comparing early (i.e., first-quartile) and late (i.e., fourth-quartile) respondents (Armstrong and Overton, 1977). A comparison of the two groups did not reveal any significant differences in means for our focal constructs.

The study’s unit of analysis is the NPD project level—a level that has been lacking study (Lai and Mahapatra, 1997) yet the level at which most IT usage currently occurs (McGrath and Iansiti, 1998). The project level is an appropriate level to study because NPD is undertaken most often by cross-functional NPD teams that need to share important product, market, and technical information, and much research examining the determinants of new product performance are also at the project level (Montoya-Weiss and Calantone, 1994). In the IT literature, Devaraj and Kohli (2003) argued that a detailed level of analysis (i.e., NPD project level) provides a better chance of detecting the impact of IT.

Table 2. Sample Characteristics

<table>
<thead>
<tr>
<th>SIC Code</th>
<th>Number of Employees</th>
<th>Sales in Dollars</th>
<th>Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Food & Textile Manufacturing</td>
<td>5.2%</td>
<td>23.5%</td>
<td>30.3%</td>
</tr>
<tr>
<td>32 Wood, Oil, & Chemical Manufacturing</td>
<td>15.6%</td>
<td>34%</td>
<td>32.1%</td>
</tr>
<tr>
<td>33 Electronic, Computer, & Medical Device Manufacturing</td>
<td>29.2%</td>
<td>17%</td>
<td>13.4%</td>
</tr>
<tr>
<td>51 Information</td>
<td>10.4%</td>
<td>12%</td>
<td>24.2%</td>
</tr>
<tr>
<td>52 Finance & Insurance</td>
<td>6.6%</td>
<td>14.5%</td>
<td>2.4%</td>
</tr>
<tr>
<td>56 Administrative Services & Waste Management</td>
<td>3.8%</td>
<td></td>
<td>12.3%</td>
</tr>
<tr>
<td>Other</td>
<td>29.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measures

Measures were drawn from existing studies and adapted where necessary. Preliminary versions of the survey were given to two academic colleagues for their feedback and comment. The final draft questionnaire was pretested with 11 executives in NPD or IT. Feedback from these executives pertained mainly to ambiguities or difficulties in responding to the items and suggestions for adaptations to ensure clarity. The instrument was revised accordingly.

To measure IT usage, respondents were given a table with a variety of IT tools used for the following activities: communication and collaboration, project development, project management, information and knowledge management, and market research and analysis. Different tools were provided for each activity: for example, e-mail and Web meetings for communication and collaboration; product design and NPD process tools for product development; scheduling software and tracking projects for project management; Excel/Access databases and shared drives and project rooms for information and knowledge management; and secondary data and online needs surveys for market research and analysis. Respondents were asked to check the tools used for each activity across three stages of the NPD process: fuzzy front end, development and testing, and launch. The number of checks for each respondent was summed for all tools in all activities across each stage of the NPD process to determine the extent of IT usage for that project. This approach is similar to that used by Grover and Goslar (1993) and Moch and Morse (1977). Research suggests that self-reported usage measures correlate well with actual usage (i.e., objective) measures of use (Taylor and Todd, 1995). Measures of the dependent variables and the antecedents as well as the sources of the measures are included in Appendix 1.

Unidimensionality, Reliability, and Validity

Anderson and Gerbing (1991) recommended examining the scales for unidimensionality, reliability, convergent validity, and discriminant validity after data collection. To obtain unidimensionality within each multi-item scale, interitem correlations and corrected item-to-total correlations for each item were calculated, taking one scale at a time. Items for which these correlations were not significant \(p < .01 \) were eliminated. Principal axis factoring explored the unidimensionality of each purified scale, using an eigenvalue of 1.0 and factor loadings of 0.25 as the cut-off points. Computing reliability coefficients explored the reliability of each purified, unidimensional scale. When the coefficient alpha was smaller than 0.7, the item with the lowest corrected item-to-total correlation was eliminated until meeting the 0.7 level. In total, 10 items were dropped after this exploratory step. Descriptive statistics on the variables included in the study are provided in Table 3.

The Harman’s one-factor test was conducted in which all the measures were entered into a single factor analysis as recommended by Podsakoff and Organ (1986). No single factor that could account for the majority of the covariance in the measures emerged, providing evidence that common method bias was not a major problem in this study.

Convergent validity of the scales was investigated by estimating two confirmatory factor (CFA) models using maximum likelihood estimation in LISREL. This approach was selected to fit the constraints of a 10-to-1 ratio of sample size to parameter estimates. Convergent validity was indicated by the fact that the items loaded significantly \((r > 0.2) \) on their corresponding latent construct. The first CFA model contained the items pertaining to the two new product performance variables. One item from the speed-to-market scale had to be dropped. The remaining model showed a good fit to the data \((\chi^2 = 19.48; df = 13; \text{goodness of fit index} [GFI] = 0.97; \text{normed fit index} [NFI] = 0.96, \text{nonnormed fit index} [NNFI] = 0.97; \text{comparative fit index} [CFI] = 0.98; \chi^2/df = 1.50) \). Root mean square error of approximation \([RMSEA] = 0.05 \). The second CFA model included the items measuring the six antecedent factors. One item each from the autonomy and IT infrastructure scales and two items from the innovative climate scale were dropped. The remaining model produced an adequate fit to the data \((\chi^2 = 456.92; df = 237; GFI = 0.85; NFI = 0.89; NNFI = 0.93, CFI = 0.94, \chi^2/df = 1.93, \text{RMSEA} = 0.07) \). Discriminant validity across the scales was assessed by estimating two-factor models for each possible pair of scales twice: once constraining the correlation between the latent variables to unity and once freeing the parameter. The results of a chi-square difference test to assess whether the chi-square of the unconstrained model was significantly lower \((p < .05) \) than that of the constrained model provided evidence for discriminant validity. Together the results of the tests indicated a sufficient degree of unidimensionality, reliability and validity. Based on this evidence,
the constructs were formed by averaging the responses to each item in a particular scale.

Several variables were controlled for in the study’s analysis: number of employees, formality of the NPD process, and product newness.

Results and Discussion

This study’s hypotheses and conceptual framework were tested with a series of regressions. First, the effect of the antecedents on the extent of IT usage was examined (Table 4a). The results show that project risk, existence of a champion, and IT embeddedness have a significant, positive relationship with IT usage, thereby supporting H1, H2, and H6.

The positive influence of project risk on IT usage suggests that project teams use IT to a greater extent when the product or project is important to the firm and its failure could seriously negatively impact the firm. This finding supports previous IT research arguing that teams gather and disseminate information via various IT tools to reduce risk and to enable better decision making (Teo and Choo, 2001).

The present study’s finding regarding the existence of a champion illustrates the importance of having enthusiastic and committed individuals who promote and support usage of particular IT tools. This result is consistent with prior research demonstrating the importance of a champion to innovation adoption (Beath, 1991; Ettlie, Bridges, and O’Keefe, 1984; Grover, 1993).

The positive relationship between IT usage and the degree to which IT is embedded in the NPD process of the organization highlights the importance of IT integration. IT integration and embeddedness, in turn, are necessary if IT is to be used to its maximum advantage (Thomke, 2006; Waarts, van Everdingen, and van Hillegersberg, 2002).

Table 4a. Determinants of IT Usage

Regression Model 1	IT Usage
(Standardized Betas)	
Degree of Risk	.16**
Existence Champion	.29**
Autonomy	.10
Innovative Climate	-.02
IT Infrastructure	.04
IT Embeddedness	.27**
Number of Employees	.02
Product Newness	.06
Formality of Process	.15*
R²	.35
Adjusted R²	.32
F-Value	11.75
N	202

* p < .05.
** p < .01.
The lack of evidence to support relationships between the other antecedents—autonomy, innovative climate, IT infrastructure—and IT usage indicates that previous research on the factors that impact adoption may not adequately explain IT usage. Of particular interest is the lack of any significant finding regarding IT infrastructure and IT usage as recent IT literature suggests that IT infrastructure is a major resource (Keen, 1991) and capability of a firm (Weill, Subramani, and Broadbent, 2002). One explanation may be that project teams in this sample are using IT tools for NPD activities; however, these tools may not necessarily be part of the organization’s infrastructure but rather only accessible to only some NPD personnel.

Next, the impact of IT on two measures of new product performance—speed to market and market performance—was investigated (Table 4b). Surprisingly, no relationship was found between IT usage and speed to market (disconfirming H7). This finding is contrary to anecdotal evidence (Bowden, 2004; Ozer, 2000) yet supports one empirical study (Durmusoglu, Calantone, and Sambamurthy, 2006). An explanation for this result may be that using IT for NPD activities is not sufficient for achieving efficiency or that long-term usage of specific IT tools may be necessary to attain efficiency advantages. It may be that it takes time for team members to acclimatize themselves to the tools and their functions. Thus, initially, usage of IT tools may actually increase time to market. Over time, familiarization with the tools can reduce this cycle time but maybe not significantly from the average time to market.

The present study’s results do show, however, that IT usage is positively and significantly related to market performance (thereby confirming H8). This finding is significant as it suggests that the value of IT usage for product development is different than has been previously thought. Specifically, it appears that greater usage of IT in a particular product development effort will lead to greater market success of that product when launched. An explanation for this result may be that use of particular IT tools enhances cross-functionality and cooperation among team members thereby leading to better product designs that meet customer needs.

Managerial Implications

This study sought to examine the antecedents of IT usage and whether or not IT usage influences new product performance. The study’s results offer the first empirical evidence that the extent of IT usage during the NPD process positively influences performance but not in the way managers expect. Specifically, IT usage does not seem to affect speed to market but rather positively impacts the performance of the new product in the marketplace. This result suggests that IT usage in NPD provides far more value to firms than previously thought; that is, IT usage impacts the commercial success of the product. Thus, instead of focusing on speed to market as the rationale for greater investments in and usage of IT in NPD, new product and IT managers need to use the positive impact of IT usage on market performance as justification for their arguments.

Another implication of this study’s findings is the need for IT to be embedded in the NPD process. This finding reinforces Thomke’s (2006) contention that unless IT is embedded into people’s work and processes, it will not be used and its benefits will not be realized. As a result, firms and projects that want to increase their usage of specific IT tools need to incorporate and integrate those tools into their development process such that these tools are routinely used for multiple activities and stages of their NPD process. Providing training, encouraging champions, supplying support, and requiring use of various tools can enable such tools to become embedded within all product development efforts. Companies and projects that fail to do so may find themselves spending lots of money on IT hardware and software without reaping any of the advantages of such spending.

Related to increase IT usage, new product managers need to encourage, facilitate, and possibly appoint champions for particular IT tools they wish their NPD personnel to use. This is particularly necessary
if, as indicated already, a firm chooses to assimilate specific IT tools into its development process. Even without a high level of IT embeddedness, however, the time constraints under which NPD teams work and the multiple projects they work on, would seem to warrant a need for IT champions as individual project team members are unlikely to experiment with new tools or sophisticated features of existing tools.

The positive influence of project risk on IT usage suggests that project teams use IT to gather and share market, technical, and project information. This, in turn, helps to reduce the uncertainty and fear of failure associated with risky projects. Thus, new product managers need to encourage teams developing risky projects to experiment with and use different IT tools to enable better information gathering, exchange, and decision making. This can be done in a variety of ways including providing resources for teams to buy software for specific NPD activities, providing training on particular IT tools, creating forums for discussions about successful and unsuccessful use of particular tools, and rewarding projects for experimentation.

Limitations and Future Research

This research is subject to the limitations inherent in cross-sectional designs, particularly the use of single informants. However, the focus on a specific issue—the role of IT in the NPD process—helps mitigate this weakness. As well, the study showed that the informants were well qualified to report on the variables in the study.

Most measures in this study have been used in previous research. However, the measures of existence of a champion, IT infrastructure, and IT embeddedness are new. Although this study’s initial operationalization of these measures is acceptable, it is likely that they can be improved. Future research should incorporate and refine these measures as they have received theoretical but little empirical attention.

The present study provides a snapshot of IT usage across company sizes and industry types. Thus, the results cannot be generalized to specific businesses or to firms employing certain NPD strategies. Future research should examine IT usage in various industry sectors to determine if the antecedents to IT usage and the relationship between usage and new product performance are industry specific.

The sample is restricted to North American companies from the United States and Canada, thereby limiting the generalizability of the results to other countries and continents. Future research should explore the research questions by using samples of firms from other geographic parts of the world such as Europe and Asia.

The lack of a significant relationship between IT usage and speed to market is surprising and warrants further investigation. Future research may wish to explore whether or not the length of time a specific tool has been used in the NPD process influences this relationship.

Finally, though this study’s regression results show significant influences of particular contextual factors on IT usage, future research should analyze the relationships between the antecedent contextual factors and IT usage and between IT usage and product performance by using structural equation modeling to generate a more complete picture of the nature of these relationships.

References

Appendix 1. Items for Measures*

<table>
<thead>
<tr>
<th>Measures and Sources</th>
<th>Description</th>
<th>Antecedents to IT Usage</th>
<th>Autonomy</th>
<th>IT Infrastructure</th>
<th>Embeddedness of IT</th>
<th>New Product Performance</th>
<th>Market Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Risk</td>
<td>Our organization has a lot riding on this project.</td>
<td>Coefficient alpha = .86</td>
<td>Coefficient alpha = .84</td>
<td>Coefficient alpha = .86</td>
<td>Coefficient alpha = .86</td>
<td>Coefficient alpha = .75</td>
<td>Coefficient alpha = .72</td>
</tr>
<tr>
<td>(Sarin and Mahajan, 2001)</td>
<td>The outcome of this project has high strategic value for our organization.</td>
<td>Poor market performance by this product will have serious consequences for our business.</td>
<td>Senior managers outside the team often interfered with the team’s work. (R)</td>
<td>This organization's computer data storage (e.g., servers, databases) is of high quality.</td>
<td>IT tools play a significant role in the development of new products in this organization.</td>
<td>This product was developed much faster than other comparable products developed by our organization.</td>
<td>Level of sales achieved.</td>
</tr>
<tr>
<td>Existence of Champion</td>
<td>One member, which includes the team leader, of the project team was committed to introducing and using IT tools.</td>
<td>Coefficient alpha = .92</td>
<td></td>
<td>This organization's intranet is of high quality.</td>
<td>In this organization, IT tools play a significant role in managing the interdependence of different functions and groups during the development process.</td>
<td>* This product was developed much faster than similar products developed by our nearest competitors.</td>
<td>* Customer satisfaction with the product.</td>
</tr>
<tr>
<td>(New Scale)</td>
<td></td>
<td></td>
<td></td>
<td>This organization's extranet is of high quality.</td>
<td>In this organization, IT tools play a significant role in the exchange and sharing of information among NPD project team members.</td>
<td></td>
<td>* Market performance of the product relative to its competition.</td>
</tr>
<tr>
<td></td>
<td>One member, which includes the team leader, of the project team was committed to encouraging others to use IT tools.</td>
<td></td>
<td></td>
<td>The IT personnel who operate and support the IT infrastructure are well qualified to do so.</td>
<td>IT tools play a significant role in the development of new products in this organization.</td>
<td></td>
<td>Chances of the product being a success in the market.</td>
</tr>
<tr>
<td></td>
<td>One member, which includes the team leader, of the project team was committed to training others in how to use particular IT tools.</td>
<td></td>
<td></td>
<td>* In this project, we used the latest IT tools available.</td>
<td>In this organization, IT tools play a significant role in the development of new products in this organization.</td>
<td></td>
<td>Level of initial market penetration (i.e., market share).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* All product development personnel have access to the same IT tools used for new product development.</td>
<td>In this organization, IT tools play a significant role in the exchange and sharing of information among NPD project team members.</td>
<td></td>
<td>Projected financial profits on this product.</td>
</tr>
</tbody>
</table>

a, reverse coded. Asterisk means item was deleted during purification. All variables are measured on a five-point scale in which 1 = strongly disagree and 5 = strongly agree except market performance, which was measured on a five-point scale in which 1 = far below expectations and 5 = far above expectations.